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An SU�2� slave-boson formulation of bond-type spin nematic orders is developed in frustrated ferromagnets,
where the spin nematic states are described as the resonating spin-triplet valence bond �RVB� states. The d
vectors of spin-triplet pairing ansatzes play the role of the directors in the bond-type spin-quadrupolar states.
The low-energy excitations around such spin-triplet RVB ansatzes generally comprise the �potentially mass-
less� gauge bosons, massless Goldstone bosons, and spinon individual excitations. Extending the projective
symmetry-group argument to the spin-triplet ansatzes, we show how to identify the number of massless gauge
bosons efficiently. Applying this formulation, we next �i� enumerate possible mean-field solutions for the
S= 1

2 ferromagnetic J1-J2 Heisenberg model on the square lattice, with ferromagnetic nearest neighbor J1 and
competing antiferromagnetic next-nearest neighbor J2 and �ii� argue their stability against small gauge fluc-
tuations. As a result, two stable spin-triplet RVB ansatzes are found in the intermediate coupling regime around
J1 :J2�1:0.4. One is the Z2 Balian-Werthamer �BW� state stabilized by the Higgs mechanism and the other is
the SU�2� chiral p-wave �Anderson-Brinkman-Morel� state stabilized by the Chern-Simon mechanism. The
former Z2 BW state in fact shows the same bond-type spin-quadrupolar order as found in the previous exact
diagonalization study �Shannon et al., Phys. Rev. Lett. 96, 027213 �2006��.
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I. INTRODUCTION

Recent theoretical progress has revealed that a certain
class of frustrated magnets1–10 shows spin nematic states1,11

as their magnetic ground states, where the spin-quadratic
tensor, Kjl,����Sj�Sl��−

���

3 �S j ·Sl� with �� ,�=1,2 ,3�,
exhibits a long-range order, while the spin moment �Sj��
remains disordered. Such spin nematic states can be classi-
fied into the chiral type �p-nematic� and nonchiral type
�n-nematic� states,1 according to the parity of the spin-
quadratic tensor. Namely, the antisymmetric quadratic tensor
Pjl,������Kjl,�� is nothing but the the vector chirality, while
the symmetric part—nonchiral one—plays the role of the
spin-quadrupolar moment, Qjl,��� 1

2 �Kjl,��+Kjl,���. The lat-
ter ordered state is a spin analog of the nematic state well
known in liquid crystals,12 where the order parameter is char-
acterized by the so-called “director vector” d�r� in the form

Q���r� = d��r�d��r� −
1

3
���	d�r�	2. �1�

From this analogy, the spin-quadrupolar states are often
dubbed simply as the “spin nematic” states.1 Depending
on how the spin-quadrupolar moments are microscopically
organized, spin nematic states have two distinct classes; �i�
site-type nematic states11,13–19 and �ii� bond-type nematic
states.1–10 The former types of nematic orders are
realized in the spin one bilinear-biquadratic model, HS=1
=
�ij��JSi ·S j +K�Si ·S j�2�, where the quadrupolar moments
constituted at respective sites exhibit the long-range order
due to the strong biquadratic coupling.11,13–15,17 Ground-state
wave functions of these site-type nematic states can be es-
sentially factorized into decoupled “vacuums,” which are de-
fined on respective sites. Thus, their spin-wave
theories13–16,18,19 including low-energy effective theories20

were well established. Namely, the elementary excitation
around such a site-factorized vacuum is also given by a lin-

ear combination of bosons introduced at respective sites.
The simplest localized spin models which allow the sec-

ond class of spin nematic states—bond-type nematic states—
are the spin one-half frustrated ferromagnets,1–10 which
could be realized in a certain family of layered cuprates21–25

and vanadates26,27 and also in solid 3He films.28 For example,
in �CuX�LaNb2O7 �X=Cl,Br�,21,22 Cu2+ ions, having a local-
ized spin 1

2 , compose a square lattice, while the anion X−

locates at the center of the square instead of the bond center.
As a result, the nearest-neighbor �NN� exchange interaction
J1 between the localized spins becomes ferromagnetic be-
cause of the Goodenough-Kanamori rule29 while the next
nearest-neighbor �NNN� interaction J2 becomes antiferro-
magnetic; the model Hamiltonian is given by

H = − J1

�j,l�

S j · Sl + J2 

��j,l��

S j · Sl �2�

with J1 ,J2�0. The preceding exact diagonalization �ED�
studies for this spin one half square-lattice J1-J2 model5 in-
dicated that the d-wave bond-type spin nematic order devel-
ops in the intermediate parameter region, J1�2J2. Namely,
strong ferromagnetic exchange interactions favor the spin-
triplet valence-bond formations between two neighboring
spin one halves, while, simultaneously, these two spin one
halves try to change their partners quantum mechanically by
way of the NNN antiferromagnetic exchange interactions.
This leads to a kind of resonating spin-triplet valence-bond
state, where the quadrupolar moment organized at each
neighbor bond exhibits the following antiferro-type configu-
ration with the uniform amplitude:

Q�j,j+x̂�,22 − Q�j,j+x̂�,11 = Q�j,j+ŷ�,11 − Q�j,j+ŷ�,22 � 0. �3�

Similar bond-nematic order phases were also found in other
frustrated ferromagnets, such as a zigzag spin chain2,6,7 con-
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taining ferromagnetic J1 and a triangular lattice multiple-
spin-exchange model.8–10

In contrast to the site-type nematic states, however, when
attempting to construct a mean-field description of these
bond-nematic states �as well as their spin-wave theories�, one
could immediately reach a more fundamental question; how
their ground-state wave functions themselves should be de-
scribed? Namely, since a single spin one half at each site is
supposed to participate equally in the spin-triplet formations
on its four ferromagnetic bonds �in the square-lattice case�,
their ground-state wave functions are no longer described by
any kind of “site-factorized wave functions.”

In this paper, we will construct an SU�2� slave-boson
mean-field theory of the bond-type spin nematic states,
which are described as the resonating valence bond �RVB�
states of the spin-triplet bonds. After splitting the original
spin operator into the bilinear of the spinon fields
�fermions�,30–34 Sj�� 1

2 f j�
† �����	f j	, we first introduce the

spin-triplet pairing ansatzes into the ferromagnetic exchange
bonds as

Eij,� � �f i�
† �����	f j	� , �4�

Dij,� � �f i��i�2����	f j	� , �5�

where Dij �Eij� describes the d vector of the spin-triplet pair
condensation35 �“spin-orbit” hopping integral�. In fact, these
two types of the d vectors, i.e., that in the particle-hole chan-
nel and in the particle-particle channel, precisely mimic the
director vector d�r� of nematic states in liquid crystals �see
Eq. �1��; in the mean-field approximation, the quadrupolar
order parameter is given by

Qjl,�� = −
1

2
�Ejl,�Ejl,�

� −
1

3
���	E jl	2� + H.c.

−
1

2
�Djl,�Djl,�

� −
1

3
���	D jl	2� + H.c. �6�

Moreover, the vector chiral order parameter is given by the
products between these two d vectors and their respective
spin-singlet ansatzes in the form36

Pjl,� =
i

2
�
 jlEjl,�

� − 
 jl
� Ejl,�� −

i

2
�� jlDjl,�

� − � jl
� Djl,�� , �7�

where 
 jl �� jl� stands for the spinless hopping integral �spin-
singlet pair condensation�30–32


 jl � �f j�
† f l��, � jl � �f j���− i��2��	f l	� . �8�

Thus, one can naturally employ the spin-triplet slave-boson
theory as a mean-field description of the spin nematic orders.
In Sec. II, we will introduce an SU�2� formulation of the
spin-triplet mean-field ansatzes, where we extensively use
the 2�2 matrix representation originally introduced by Af-
fleck et al.,37 instead of the usual Nambu vector. This repre-
sentation �see Eqs. �10� and �12�� clearly dictates that the
low-energy excitation around any spin-triplet RVB state gen-
erally consists of �gapless� Goldstone boson and �potentially
gapless� gauge boson. It is widely known that the existence
of the gapless gauge fluctuations is crucial to the instability

of the starting mean-field ansatzes.33,34,38 Thus, we will next
argue the spin-triplet extension of the projective symmetry
group �PSG� arguments. Without resorting to any micro-
scopic calculations, this extension enables us to identify the
number of the massless gauge bosons for any given mixed
ansatz having both spin-triplet and spin-singlet link vari-
ables.

Armed with these general formulations, we study in Sec.
III the ferromagnetic J1-J2 Heisenberg square-lattice model
defined in Eq. �2�, thereby finding two stable spin-triplet
RVB ansatzes in the intermediate coupling region, J1�2J2.
One is the Balian-Werthamer- �BW-�type triplet pairing
state39 having the coplanar configurations of the d vector,

d̂�k�
 x̂kx+ ŷky while the other is the chiral p-wave state40

having its d vector all pointing in the same direction

d̂�k�
 ẑ�kx+ iky� �see Fig. 2�b��. The PSG arguments indicate
that, in general, all the nonmagnetic �gauge� excitations in
the BW state have finite Higgs mass. Thus, this ansatz—Z2
BW state—is stable against any type of small gauge fluctua-
tions. On the other hand, the chiral p-wave state does not
break any of the SU�2� gauge symmetry. Instead, it breaks
the time-reversal symmetry and all the mirror symmetries.
As a result, nonmagnetic �gauge� bosons are endowed by the
Chern-Simon term with the topologically induced mass.
Thus, this SU�2� chiral p-wave state is also stable against
any small gauge fluctuation. Though both the BW and chiral
p-wave states exhibit spin-quadrupolar orders, the BW state
especially shows the same configuration of quadrupolar mo-
ments as the bond-type spin nematic order found in Ref. 5.
Hence, we further discuss possible experimental features of
this BW state, mainly focusing on its magnetic excitations.

Sec. IV is devoted to the summary and open issues. The
relation between our Z2 BW state and the time-reversal to-
pological insulator recently discussed in the various
literatures42–46 is briefly mentioned. We also propose those
combinations of the triplet and singlet ansatzes which de-
scribe the vector chiral order having no finite director
vector,4 i.e., Pjl,��0 and Qjl,��=0. Those readers who want
to make the SU�2� slave-boson study in frustrated ferromag-
nets be a controlled analysis might as well consult the Ap-
pendix, where we describe the large N generalization of frus-
trated ferromagnetic spin models.

II. SU(2) FORMULATION OF SPIN-TRIPLET RVB STATE

A. Matrix representation

The slave-boson formulation begins with describing the
spin operator by the bilinear of fermion fields;
2Sj�� f j�

† �����	f j	. The enlarged �fermion’s� Hilbert space
reduces to the physical �spin’s� Hilbert space, provided that
the following local constraints are strictly observed at each
site:

f j�
† ��3��	f j	 = 1, f j↑

† f j↓
† = f j↓f j↑ = 0.

In the partition function, these local constraints are imple-
mented as the coupling between the fermion �spinon� fields
and the temporal SU�2� gauge fields aj,�

� ��=1,2 ,3�,30,31,33,34
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Z �
 da��d�†d� exp�− 

0

	

d�L� ,

L �
1

2

j

Tr�� j
†����0 + 


�=1

3

iaj,�
� ���� j� + H , �9�

where � j and � j
† stand for the 2�2 matrices

� j � � f j,↑ f j,↓

f j,↓
† − f j,↑

† �, � j
† � � f j,↑

† f j,↓

f j,↓
† − f j,↑

� . �10�

The spin-Hamiltonian part H becomes quartic in the fermion
field �� field�. Depending on the sign of the exchange inter-
action, we decompose this quartic term into the
Stratonovich-Hubbard variables in two alternative ways

Z =
 dUsindUtrida��d�†d� exp�− 

0

	

d�L� , �11�

L =
1

2

j

Tr�� j
†����0 + 


�=1

3

iaj,�
� ���� j�

−
J1

4 

�jl�

��− 	E jl	2 − 	D jl	2� + Tr�� j
†Ujl,�

tri �l��
T��

−
J2

4 

��jl��

��− 	
 jl	2 − 	� jl	2� + Tr�� j
†Ujl

sin�l�� . �12�

Namely, the triplet and singlet link variables

Uij
sin � �
ij

� �ij

�ij
� − 
ij

�, Uij,�
tri � � Eij,�

� Dij,�

− Dij,�
� Eij,�

� �13�

are introduced as the auxiliary fields for the ferromagnetic
and antiferromagnetic bonds, respectively. This is simply be-
cause the sign of the ferromagnetic exchange interaction gen-
erally allows us to perform the Gaussian integration only
over the d vectors in the excitonic/Cooper channel. In fact,
this integration precisely reproduces the ferromagnetic ex-
change interaction

− 4S j · Sl = − 

�=1

3

�f j�
† �����	f l	��f l�

† ������f j��

− 

�=1

3

�f j�
† ��2����	f l	

† ��f l�����2���f j��

while that over the singlet variable leads to the antiferromag-
netic exchange interaction30–34

4S j · Sl = − �f j�
† f l���f l	

† f j	� − �f j�
† ��2��	f l	

† ��f l���2���f j�� .

Thus, the slave-boson formulation of mixed Heisenberg mag-
nets generally requires us to use the spin-triplet link variable
Ujl,�

tri for every ferromagnetic bond and the spin-singlet link
variable Ujl

sin for every antiferromagnetic bond. The saddle-
point solutions of Eq. �12� lead to the coupled gap equations
for these link variables, i.e., Eqs. �4�, �5�, and �8� whose
right-hand sides are self-consistently given by these mean-
fields themselves. In terms of Ujl,�

tri and Ujl
sin thus determined,

the spin-quadrupolar moment and vector chirality are given
by

− 2Qjl,�� = Tr�Ulj,�
tri Ujl,�

tri � −
���

3 

�=1

3

Tr�Ulj,�
tri Ujl,�

tri � , �14�

− 2iPjl,� = Tr�Ulj
sinUjl,�

tri � . �15�

Comparing Eq. �12� with Eq. �15� we notice that the present
J1-J2 model can have spin-quadrupolar order on ferromag-
netic bonds but cannot have vector chirality on any links
since Ulj

sinUjl,�
tri =0. Within our formalism, a naive mean-field

description of vector chiral orders becomes possible only in
those spin models having either symmetric anisotropic ex-
change interactions or antisymmetric anisotropic one. In the
next section, without making any distinction between the
n-nematic states and p-nematic ones, we will widely call
those mean-field ansatzes having both finite triplet ansatz
and singlet ansatz as spin-triplet RVB states.

B. Low-energy excitations around spin-triplet RVB states

To see the low-energy excitations around the spin-triplet
RVB ansatzes, let us first express the spin operator in terms
of the 2�2 matrix representation,37 Sj�� 1

4Tr�� j
†� j��

T�.
Namely, a spin rotation is described by an SU�2� matrix, say
hj, applied from the left- �right-�hand side of � j

† �� j�

� j → � jhj
T, � j

† → hj
�� j

†

while physical quantities are invariant under any local SU�2�
gauge transformation applied from the right- �left-�hand side
of � j

† �� j�

� j → gj� j, � j
† → � j

†gj
†,

�Ujl,�
tri ,Ujl

sin� → gj�Ujl,�
tri ,Ujl

sin�gl
†.

For example, both parts of the spin-quadratic tensor, Eqs.
�14� and �15�, are invariant under this local SU�2� gauge
transformation. In regard to these two symmetries, any spin-
triplet mean-field ansatz is generally accompanied by two
types of low-energy excitations: the magnetic ones �Gold-
stone bosons�47 and the the nonmagnetic ones �gauge
bosons�.30,31,33,34,37,48

The former excitations are semiclassically described by
the deformations of the d vectors around its mean-field con-
figuration

Ujl,�
tri � 


�=1

3

Ūjl,�
tri R��� j + l

2
,�� �16�

for �=1,2 ,3 with the 3�3 rotational matrix R̂�x ,��. Such
deformations cost infinitesimally small energy in spin mod-
els with spin-continuous symmetry, provided that the varia-
tion in the rotation is sufficiently slow in space and time.
This type of deformations describe the Goldstone modes ac-
companying the spontaneous symmetry breaking.

In addition to this conventional excitation, a certain non-
magnetic �gauge� excitations also become massless, when
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our starting mean-field ansatz is invariant under a continuous
gauge symmetry.30,31,33,34 For example, assume that the in-
variant gauge group �IGG� contains the U�1� gauge symme-
try �ei��3 	�� �0,2���. Namely, our mean-field ansatz is in-
variant under any rotation around the 3 axis in the gauge
space

ei��3�Ūjl,�
tri ,Ūjl

sin�e−i��3 = �Ūjl,�
tri ,Ūjl

sin� �17�

for �=1,2 ,3 and āj,�
� =��3āj,�

3 . Then, we can argue that the
following nonmagnetic deformation also comprises the gap-
less excitation:

�Ujl,�
tri ,Ujl

sin� � �Ūjl,�
tri ,Ūjl

sin�eiajl�3, �18�

aj,�
3 � āj,�

3 + a0�j,�� , �19�

where ajl relates to the spatial components of “gauge fluc-
tuations” a��j ,�� ��=1, . . . ,d� in the form

ajl��� = �j − l��a��j,�� . �20�

Specifically, one can expand the effective action in terms of
these variations a��j ,�� ��=0,1 , . . . ,d�, assuming these fluc-
tuations to be much smaller than their units, a��j ,���2�.
Up to their quadratic order, the effective action generally
reads as follows:

Fgauge = 

�,	=0

d



Q

M�	�Q�a��Q�a	�− Q� + ¯ , �21�

a��Q� =
1

�N	


i�n



q

eiqj−i�n�a��j,�� �22�

with Q= �q , i�m�. Then, taking into account the U�1� gauge
symmetry of the mean-field ansatz, one can specify the form

of the �d+1�� �d+1� matrix M̂�Q�, such that the quadratic
part in Eq. �21� reduces to the U�1� gauge-invariant form as
in Eq. �23�.

To see this, introduce the following local U�1� gauge
transformation in Eq. �12�:

� j
†��� → � j

†���ei�j����3,

� j��� → e−i�j����3� j��� ,

where � j��� varies slowly in space and time. Under this
transformation, all changes in the link variables �Eq. �18��
are put into the transformation, ajl→ajl+�l−� j and
a0→a0+���, due to the U�1� symmetry in IGG. Thus the
effective action around Q�0 is literally transformed as

Fgauge → 

�,	



Q�0

M�	�Q��a� + �����Q��a	 + �	���− Q� .

However, the free energy should have been invariant under
any gauge transformation since gauge degrees of freedom
can be absorbed into the integral variables � fields. This

requires that M̂�Q� must precisely reduce to zero at Q=0, so
that the quadratic part of the action takes U�1� gauge-
invariant forms, e.g.,

Fgauge
U�1� =

1

8�



Q�0


�=0

d
1

g�
2 f��Q�f��− Q� + ¯ , �23�

where f����	���a	 stands for the field strength.30,31,33,34 It
is well known that this maxwell form does not suppress the
gauge fluctuation efficiently. Especially, when the mean-field
ansatz have its fermionic excitations fully gapped and when
d=2, these massless gauge fluctuations destroy the mean-
field ansatz itself,33,34,38 apart from some exceptional
cases.49–54 Following the literature,33 we call in this paper
such spin-triplet mean-field ansatz as the gapped U�1� �or
SU�2�� state.

On the other hand, if the starting mean-field ansatz has no
continuous IGG, like in Eq. �17�, the local minimum condi-
tion imposed on mean-field ansatzes generally requires all

the eigenvalues of M̂�Q� to be positive. Therefore, all the
gauge fields have finite Higgs mass around any Q

Fgauge
Z2 = 


Q


�=0

d

M̃��Q�ã��Q�ã��− Q� + ¯ �24�

with M̃��Q��0. In contrast to the maxwell form discussed
above, this finite Higgs mass suppresses any small gauge
fluctuation completely. Hence the starting mean-field ansatz
is always guaranteed to be �at least locally� stable. Such an-
satzes are usually dubbed as the Z2 state.

The efficient way to confirm the absence of the continu-
ous IGG was introduced by Wen33,48 where he pointed out
the sufficient condition for its absence. We can extend his
argument to the spin-triplet RVB states also. To see this, let
us begin with the calculation of the SU�2� flux defined on a
plaquette by multiplying link variables along the closed loop

in a regular sequence, where either Ūij
sin or one of Ūij,�

tri

should be chosen on each link. For example, when the loop
is given by a triangular path i→ j→k→ i, one can have an

SU�2� flux by ŪijŪjkŪki, which always transforms in a
gauge-covariant way

ŪijŪjkŪki → gi
† · ŪijŪjkŪki · gi

under � j→gj� j. As such, the relative angle subtended by
two distinct SU�2� fluxes derived from the same base site,

such as ŪijŪjkŪki and ŪijŪjlŪli, contains nontrivial gauge-
independent information, provided that the two triangular
paths, �ijk�i�� and �ijl�i��, are different with each other. Note
that, even out of the same triangular loop, we can have two
distinct fluxes, when one of its three links has two different

types of spin-triplet ansatzes, Ūij,1
tri � Ūij,2

tri . In this case, we

should regard that Ūij,1
tri Ūjk

¯Ūki
¯ and Ūij,2

tri Ūjk
¯Ūki

¯ are two dis-
tinct fluxes obtained from the same base site i.

Having all SU�2� fluxes thus obtained in hand, one can
readily see that, (i) if two distinct SU�2� fluxes obtained from
the same base site are not collinear with each other, there is
no continuous IGG in that mean-field ansatz. (ii) If all the
distinct fluxes obtained from the same base site are pointed
along one direction in the gauge space, say along the 3 axis,
the ansatz could have a certain U�1� gauge symmetry around
this 3 axis, just like in Eq. �17�. One can also confirm that,
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(iii) the ansatz can be invariant under a certain SU�2� gauge
symmetry �so-called SU�2� state�, if all the SU�2� fluxes are
proportional to the unit matrix.

This “noncollinearity” argument of the SU�2� fluxes con-
cludes the �local� stability of each ansatz against gauge fluc-
tuations very efficiently without resorting to any microscopic
calculation. Thus, it substantially helps us to find a better
spin-triplet mean-field ansatz as in the case of spin-single
RVB ansatzes.33,48

III. J1-J2 FRUSTRATED FERROMAGNETIC SQUARE-
LATTICE HEISENBERG MODEL

In this section, we will apply the spin-triplet slave-boson
mean-field formulation onto the spin-1

2 J1-J2 mixed Heisen-
berg model �2� on the square lattice with ferromagnetic NN
J1 and antiferromagnetic NNN J2. As was described in the
previous section, we always decompose the ferromagnetic
NN bond into the spin-triplet ansatz and the antiferromag-
netic NNN bond into the spin-singlet ansatz.

A. Mean-field solutions

To be specific, we have numerically studied the various
local “stable” minima of the mean-field free energy given in
Eq. �12�, assuming that the magnetic unit cells �MUC� are
either (i) original square-lattice unit cell or (ii) 2�2 of the
original unit cell. The dimension of the �real-valued�
parameter space in each case becomes (i) 32�+3� and (ii)
128�+12�. Starting from a randomly chosen initial point in
these multiple dimensional parameter spaces, we perform the
Newton-Raphson method, only to reach a certain local mini-
mum of the mean-field free energy Emf �per the magnetic
unit cell�

Emf �
J1

4 

�jl��MUC

�	E jl	2 + 	D jl	2� +
J2

4 

��jl���MUC

�	
 jl	2 + 	� jl	2�

−
1

16�2 

�=1

� 
 

MBZ

dkxdky	��	 �25�

with (i) �=4 or (ii) �=16. Here, the summation over jl is
taken within each magnetic unit cell and �� denotes the
spinon energy band. We have repeated this procedure from
50 times to 300 times for each parameter point, i.e.,
�J1 ,J2�= �sin � , cos �� with 0���

�
2 . In this way, we enu-

merated various spin-triplet RVB ansatzes.
Throughout this extensive search, we found basically

three distinct RVB ansatzes having both spin-triplet link vari-
able on each NN bond and spin-singlet link variable on each
NNN bond. All of these three do not break any translational
symmetries of the original unit cell, i.e., Tx and Ty.

1. Z2 Balian-Werthamer state

The first one is a sort of the Balian-Werthamer �BW�
state39 where the d vector on the NN x link is perpendicular
to that on the y link

U�j,j+x̂�,�
tri = i��1D�2, U�j,j+ŷ�,�

tri = i��2D�2,

U�j,j+x̂�ŷ�
sin = 
�3 � ��1, ia� = 0. �26�

“D,” “
” and “�” above correspond to the real parts of Eqs.
�5� and �8�, respectively. This RVB state exhibits the same
antiferro-type configuration of quadrupolar moments as the
bond-nematic state found in Ref. 5. Namely, the nematic
order parameters on NN bonds show

Qjl,11 = −
2

3
D2, Qjl,22 = Qjl,33 =

1

3
D2 �27�

for the x direction and

Qjl,22 = −
2

3
D2, Qjl,11 = Qjl,33 =

1

3
D2 �28�

for the y direction, where Qjl,��=0 for ��� �see Fig. 1�.
While this mean-field ansatz breaks the mirror symmetry Pxy
which interchanges x link and y link, it is invariant under the
following combined symmetry and gauge transformations:
GxTx, GyTy, GPx

Px, GPy
Py, GPxy�

Pxy� , and GTT. The respective
gauge transformations read

Gx = Gy = �0, GPx
= i�1�− 1� jx, GPy

= i�1�− 1� jy ,

GPxy�
= i�2�− 1� jy, GT = �− 1�ix+iy . �29�

Here T refers to the time-reversal symmetry while Pxy� stands
for the mirror symmetry Pxy accompanied by an appropriate
spin rotation about the 3 axis by � /2.

Provided that �
�0, the ansatz supports two noncol-
linear SU�2� gauge fluxes

U�j,j+x̂�,1
tri U�j+x̂,j+x̂+ŷ�,2

tri U�j+x̂+ŷ,j�
sin 
 
�3 + ��1, �30�

U�j,j+x̂�,1
tri U�j+x̂,j+x̂−ŷ�,2

tri U�j+x̂−ŷ,j�
sin 
 
�3 − ��1. �31�

Hence it is protected from any small gauge fluctuation by
finite Higgs mass. We call this ansatz as the Z2 BW state. The
spinon’s band dispersion �� of this Z2 state is comprised of
two doubly degenerate bands, both of which are always
separated by a finite-energy gap in the entire Brillouin zone,
�−� ,��� �−� ,��

(a) (b)

x y

z
J2

J1

J1

FIG. 1. �Color online� �a� 2z2−x2−y2 type quadrupole moment
formed by two S=1 /2 spins on each bond. �b� J1-J2 model and the
configuration of the quadrupole moments on bonds in the Z2 BW
state �see Eqs. �27� and �28��.
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�1,2 � − �3,4 � �A2�sx
2 + sy

2� + B2cx
2cy

2 + C2sx
2sy

2�1/2 �32�

with �s� ,c����sin k� , cos k�� and �2A ,B ,C�
��J1D ,J2
 ,J2��.

2. SU(2) chiral p-wave state

The second ansatz we found is the chiral p-wave
�Anderson-Brinkman-Morel� state,40 in which all the d vec-
tors on the NN bonds are collinear, while the d vector on the
x link acquires extra phase i in relative to that on the y link

U�j,j+x̂�,�
tri = i��3D�2, U�j,j+ŷ�,�

tri = i��3D�1,

U�j,j+x̂�ŷ�
sin = 
�3, ia� = 0. �33�

Namely, two D appearing in the first line stand for the real
and imaginary part of the d vector, respectively. Because of
this relative phase factor, this ansatz has its fermionic band-
dispersion fully gapped in the whole momentum space

�1,2 = − �3,4 = �k = �A2�sx
2 + sy

2� + B2cx
2cy

2�1/2. �34�

In this state, all NN bonds have the same ferronematic order
Qjl,33=− 2

3D2, Qjl,11=Qjl,22= 1
3D2. The IGG of this chiral

p-wave state contains the following three continuous gauge
symmetries:

�ei�− 1�jx+jy��3,ei�− 1�jx��1,ei�− 1�jy��2	� � �0,2��� . �35�

Correspondingly, the low-energy effective theory in the
gauge �nonmagnetic� part consists of three maxwell forms
around q= �� ,��, �� ,0�, and �0,��, respectively. Namely,
above continuous gauge symmetries require that the follow-
ing three types of nonmagnetic deformations constitute the
U�1� gauge-invariant effective actions:

�Ujl,�
tri ,Ujl

sin� = �Ūjl,�
tri ,Ūjl

sin�ei�j − l���− 1�lx+lya��l,���3,

aj,�
3 = �− 1� jx+jya0�j,�� , �36�

�Ujl
tri,Ujl

sin� = �Ūjl,�
tri ,Ūjl

sin�ei�j − l���− 1�lxa��l,���1,

aj,�
1 = �− 1� jxa0�j,�� , �37�

�Ujl,�
tri ,Ujl

sin� = �Ūjl,�
tri ,Ūjl

sin�ei�j − l���− 1�lya��l,���2,

aj,�
2 = �− 1� jya0�j,�� . �38�

Though these three types of gauge fluctuations are not sup-
pressed by finite Higgs mass, the ansatz itself is still pro-
tected by the so-called Chern-Simon mechanism.33,34,49–53

To see this, notice that the ansatz �Eq. �33�� breaks all the
mirror symmetries Px, Py, Pxy, and the time-reversal symme-
try T. Instead, it is invariant only under these mirror symme-
tries accompanied by the time-reversal symmetry GPT · PT or
under the spatial-inversion symmetry GR�

R�. The respective
gauge transformations are given by

GPyT = �0, GR�
= GPxT = �− 1� jx+jy ,

GPxyT = i�− �3� jx+jy . �39�

This magnetic point group clearly allows the spontaneous
Hall conductance of the “spinon,” like in the chiral spin
state.51–53 In fact, corresponding to the three continuous
gauge symmetries given in Eq. �35�, we have three con-
served “charges,” all of which are accompanied by finite
quantized transverse conductance �xy = 2

2� . As a result, the
effective actions around q= �� ,��, �0,��, and �� ,0� acquire
the Chern-Simon term in addition to the maxwell
form33,34,51–53

Fgauge �
 dx2d�
�xy

2
a���a����� + �maxwell form� .

This Chern-Simon term endows the apparently massless
gauge boson with a finite-energy gap.50

3. Z2 collinear state

The third stable ansatz we found is the “collinear” state,
where all d vectors are pointing to the same direction

U�j,j+x̂�,�
tri = U�j,j+ŷ�,�

tri = i��3D�2,

U�j,j+x̂�ŷ�
sin = 
�3 � ��1, iaj,�

1 � 0 �40�

showing ferronematic order Qjl,33=− 2
3D2 and Qjl,11=Qjl,22

= 1
3D2. Although having the same spin-quadrupolar moment

as the previous one, this collinear ansatz is a distinct quan-
tum order state from the SU�2� chiral p-wave state. It pre-
serves mirror symmetries as well as the time-reversal sym-
metry. In fact, one can see that all the discrete symmetries of
the original square lattice are recovered, when combined
with the following gauge transformations:

Gx = Gy = �0, GPx
= i�1�− 1� jx, GPy

= i�1�− 1� jy ,

GPxy
= 1, GT = �− 1� jx+jy . �41�

Having the noncollinear SU�2� gauge fluxes as in Eqs. �30�
and �31�, all the gauge fluctuations around this ansatz are
suppressed by finite Higgs mass. We hence call this state as
Z2 collinear state.

B. Phase diagram

The mean-field energy for these three ansatzes are plotted
in Fig. 2�a� with �J1 ,J2��J�sin � , cos ��. Let us begin with
the lowest energy mean-field solution in the well-studied
limit, J2�J1. In the strong J2 limit, our model reduces to the
two decoupled antiferromagnetic square lattice so that the
knowledges of the saddle-point solutions in this limit have
been well established.30,31,33,34,41,55–58 Namely, the �-flux
state defined on each square lattice

U�j,j+x̂�ŷ�
sin = 
�3 � ��1, U�j,j+�̂�,�

tri = iaj,�
� = 0 �42�

with 
=�, becomes global minimum, when the MUC is re-
stricted to the original square-lattice unit cell. On the other
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hand, when the MUC is enlarged up to the 2�2, the global
minimum state becomes one of the staggered dimer states
introduced on each decoupled square lattice, e.g.,

U�j,j+x̂+ŷ�
sin = U�j+x̂,j+ŷ�

sin = 
�3, U�j,j+�̂�,�
tri = iaj,�

� = 0,

U�j+x̂,j+2x̂+ŷ�
sin = U�j+2x̂,j+x̂+ŷ�

sin = 0,

U�j+ŷ,j+x̂+2ŷ�
sin = U�j+x̂+ŷ,j+2ŷ�

sin = 0,

U�j+x̂+ŷ,j+2x̂+2ŷ�
sin = U�j+2x̂+ŷ,j+x̂+2ŷ�

sin = 0. �43�

However, using the variational Monte Carlo calculations,
Gros and his co-workers41 have demonstrated that, when
projected onto the original �spin� Hilbert space, the �-flux
state eventually wins over this isolated dimer state. In fact, it
is well established58 that the projected �-flux state gives the
second best variational energy in the strong J2 limit �the best
variational estimate is obtained from the Neel order state56�.

When increasing the NN ferromagnetic interaction J1, a
finite spin-triplet ansatz continuously develops on the top of
this �-flux state, while simultaneously the parameters � start
to deviate from 
, i.e., ��
. This leads to either Z2 BW
state or Z2 collinear state for �c1�0.66��. Thus, the transi-
tions from the �-flux state to these two Z2 states are both the
second order at the mean-field level. Energetically speaking,
the Z2 BW state gives a slightly lower mean-field energy
than that of the Z2 collinear state.

Notice also that these two Z2 states are clearly preemptted
by the staggered dimer state, Eq. �43�, at the mean-field level
�see Fig. 2�a��. Observing the situation in the strong J2 limit,
however, one can naturally expect that, when projected onto
the physical �spin� Hilbert space, both Z2 states would win
over this isolated dimer state in the case of a finite J1.
Namely, since our Z2 states are constructed based on the
decoupled �-flux states �compare Eqs. �26� and �40� with Eq.
�42��, they would certainly acquire substantial resonance en-
ergies in the same way as the �-flux state does. On the other
hand, being factorisable, any isolated dimer state cannot gain
such resonance energies, irrespective of finite ferromagnetic
exchange interactions. Moreover, Fig. 2�a� indicates that the
Z2 BW asatz is quite energetically tunable in the presence of
the ferromagnetic exchange interaction. Thus, we presume
that the Z2 BW state finally dominates in this intermediate
coupling region, �c1�0.66��.

When �c2�0.76��, this Z2 BW state reduces to the U�1�
state having no finite �. Namely, with �=0, two SU�2�
gauge fluxes given in Eqs. �30� and �31� become collinear
with each other. Simultaneously, this U�1� BW state becomes
energetically degenerate with the SU�2� chiral p-wave state.
Namely, both of them have precisely the same mean-field
band dispersions ��k �compare Eq. �34� with Eq. �32� hav-
ing �=0�.

This U�1� BW state is destroyed by the infinitesimally
small gauge fluctuation. Namely, in the absence of finite �,
the nonmagnetic deformations defined in Eq. �19� constitute
the following maxwell form around q= �� ,��:

Fgauge = 

0

	

d�
 d2x�ue2 +
1

2
Kb2� + ¯ ,

where e� ��=1,2� and b are defined, from Eqs.
�19� and �20�, as e��j ,����−1� jx+jy���a�−��a0� and
b�j ,����−1� jx+jy��2a1−�1a2�. Since the fermionic excita-
tions are fully gapped even without � �see Eq. �32��, this
maxwell form is free from any dissipation effect,59 e.g.,

-0.1

-0.095

-0.09

-0.085

-0.08

-0.075

0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82
θ [rad]

E

c1 c2 c3

Z2 BW state

θ = θθ = θθ = θ

(b)

(a)

flux state
or CAF state

flat-band states
= Ferro state

2nd order 1st order

c1 c2 c3θ = θθ = θθ = θ

SU(2) chiral
p-wave state

A

CB

E

D

F

BA D E

mf

θ = 0 θ = π/2

FIG. 2. �Color online� �a� Mean-field energies �per site� of the
various ansatzes in the S=1 /2 square-lattice ferromagnetic J1-J2

model. Note that �J1 ,J2��	J	�sin � , cos ��, where the energy unit is
taken to be 	J	. The blue line �labeled as B� is for the BW state,
which is the Z2 state for �c1����c2 and which reduces to the U�1�
state for �c2��. The green line �labeled as C� is for the Z2 collinear
state while the red line �labeled as D� stands for the SU�2� chiral
p-wave state. The red-dotted line �labeled as A� is the doubled
�-flux state, where both the A sublattice and the B sublattice sup-
port �-flux states, respectively �see Eq. �42��. The Blue-dotted line
�labeled as E� is for a set of flat-band states �Eflat

mf =− 1
8 	J	sin ��, all of

which give the same best mean-field energy for �c3��. The green-
dotted line �labeled as F� is for the staggered dimer state
�Edimer

mf =− 1
8 	J	cos ��, where both the A sublattice and the B sublat-

tice support staggered dimer states, respectively �see Eq. �43� for its
example�. These isolated dimer states are known to be overcome
energetically by the doubled �-flux state �Ref. 41�, when they are
projected onto the physical Hilbert space. Since the Z2 BW state is
composed on the top of the �-flux state, this staggered dimer state
is also expected to be overcome by the projected Z2 BW state. �b�
Expected mean-field phase diagram in the intermediate coupling
region. The transition at �c1 is the second order since the magnetic
space group of the Z2 BW state belongs to that of the �-flux state.
On the other hand, the transition at �c3 is the first order at the
mean-field level, which one can see directly from the figure �a�.
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u =
 

�− �,��2

d2k
A4sy

2cx
2 + A2B2cy

2�1 + sx
2sy

2�
16�2�k

5 � 0.

Having the time-reversal symmetry �see Eq. �29��, the mass-
less gauge fluctuation is not suppressed by the Chern-Simon
term either.60 Consequently, infinitesimally small fluctuations
of this type of gauge fields lead the U�1� BW state into a
confining phase having no gapped free spinon in its excita-
tion. More specifically, those space-time instantons �mono-
poles� which are allowed by the corresponding compact
QED action, �d��d2x�ue2−K cos���	��a	��, proliferate in
the 2+1 dimensional space,38 lowering a certain magnetic
symmetries enumerated in Eq. �29�.61 To capture the result-
ing magnetic space group of the confining phase, one gener-
ally needs to identify the quantum number carried by this
monopole creation field.62,63

For �c3�0.775��, these two degenerate
ansatzes—SU�2� chiral p-wave state and U�1� BW state—
are further overcome �energetically� by another ansatz,
which we dubbed as the “flat-band” states

Ujl
sin = 0, Ujl

tri � 0, iaj,�
� � 0. �44�

These flat-band states do not have any finite singlet ansatzes
anymore and keep on giving the lowest mean-field energy
�Eflat

mf =− 1
8J1� for the remaining ferromagnetic side,

�c3���
�
2 . However, these flat-band states do not necessar-

ily refer to a specific configuration of the spin-triplet an-
satzes. Instead, they refer to a group of the states all of which
give precisely the same mean-field energy. For example,
these flat-band states include the following parameterization
of the spin-triplet ansatz:

�E�j,j+x̂�� D�j,j+x̂�� D�j,j+x̂�� � = �n1 · m1
T,

�E�j,j+ŷ�� D�j,j+ŷ�� D�j,j+ŷ�� � = 	n1 · m2
T,

E�j,j+x̂�� = �n2, E�j,j+ŷ�� = 	n3,

n1
T · n2 = n2

T · n3 = n3
T · n1 = m1

T · m2 = 0, �45�

where �2+	2= 1
4 , and n j and m j can be arbitrary unit vectors

that observe Eq. �45�. Here Ejl,�� and Djl,�� stand for the real
part of Ejl,� and Djl,�, respectively, while Ejl,�� and Djl,�� are
their respective imaginary parts. Thus, only the first one is
parity even Ejl,�� =Elj,�� while the others are odd
Ejl,�� =−Elj,�� and Djl,�=−Dlj,�. Bearing these in mind, one
can easily see that this mean-field ansatz always gives the
two doubly degenerate spinon bands, which are totally flat in
the entire Brillouin zone

�1,2 = − �3,4 =
J1

4
.

Because of this feature, all the spin-triplet ansatzes param-
eterized by Eq. �45� give the same mean-field energy �per
site� Eflat

mf =− 1
8J1. The emergence of these “huge” numbers of

flat-band states in the strong J1 limit reflects the fact that the
ground-state order parameter of any Heisenberg ferromagnet
�total spin moment� and the corresponding spin Hamiltonian

are simultaneously diagonalizable. When projected onto the
physical �spin� Hilbert space, we expect that these flat-band
states reduce to a fully polarized state �ferromagnetic state�.

Observing Fig. 2, please notice that our Z2 BW phase
appears in larger J2 region in comparison with the previous
ED studies. Namely, Fig. 2 indicates that its phase
boundaries are given by J1 :J2=1:1.29 at �=�c1 and
J1 :J2=1:1.05 at �=�c2 while d-wave bond-nematic order
phase was found in 0.4�J2 /J1�0.6 in the previous finite-
size studies.5 This discrepancy simply stems from the so-
called “factor 3” difference, often encountered between the
Hartree-Fock �HF� spin-singlet ansatz and the HF spin-triplet
ansatz. If one employed a more numerics-oriented
formulation64 J1

4 appearing in Eq. �12� is replaced by
J1

8 while
J2

4 is replaced by
3J2

8 . Consequently, we have J1 :J2=1:0.43
��=�c1� and J1 :J2=1:0.36 ��=�c2�, which would be rela-
tively comparable with the previous ED result. More quanti-
tative comparison, however, requires the variational Monte
Carlo studies based on these spin-triplet ansatzes.

In summary, we have argued that three spin-triplet RVB
ansatzes—Z2 and U�1� BW states and SU�2� chiral p-wave
state—become the lowest mean-field states in the intermedi-
ate coupling region, J1�2J2 �see Fig. 2�b��. Among them,
both the Z2 BW state and the SU�2� chiral p-wave state are
stable against any �infinitesimally� small gauge fluctuation
while in the U�1� BW state the effect of gauge fluctuation is
crucial making spinons confined. Using Eq. �6�, one can eas-
ily see that the BW states show the d-wave bond-type spin-
quadrupolar order precisely as in Eq. �3�.

C. Magnetic excitations in the BW states

Here we briefly discuss magnetic excitations in the Z2
BW state. The “low-energy” excitation around the Z2 BW
state is composed of three parts; (i) gapped nonmagnetic ex-
citations �gauge bosons�, (ii) gapless magnetic excitations
�Goldstone bosons�, and (iii) gapped fermionic �� field� in-
dividual excitations. The gapped gauge boson plays only a
subdominant role in the spin-structure factor while the latter
two contribute significantly to magnetic excitations. Up to
the Hartree-Fock level, one can easily see that the gapped
fermionic excitation constitutes the continuum spectrum
above ��max�J1	D	 ,J2	
	�. When one further takes into ac-
count the random-phase approximation terms,65,66 the gap-
less bosonic dispersions emerge below this spinon con-
tinuum, whose low-energy limit can be described by the
matrix-formed nonlinear � model

Fmagnetic = 

�=�,x,y

Tr��̂���R̂−1��R̂� . �46�

Namely, the 3�3 matrix R̂ is nothing but the spatiotempo-
rally varying rotational matrix of the director vector used in
Eq. �16�. The symmetry argument67 dictates that the diagonal

matrices �̂� generally take the following form
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��̂�,�̂x,�̂y� � ��c0

c2

c2
�,�c1

c3

c4
�,�c1

c4

c3
�� ,

�47�

where the director coplanar plane was taken to be the 2–3
plane. In terms of the semiclassical �gradient� expansion, one
can directly calculate their respective coupling constants:

c0 � 0, c1 �
 

�− �,��2

d2k
A4sy

2cx
2

64�2�k
3 ,

c2 �
 

�− �,��2

d2k
A2�sx

2 + sy
2�

64�2�k
3 ,

c3 �
 

�− �,��2

d2k�J1A2sx
2

8�2 −
A4sy

2cx
2

64�2�k
3� ,

c4 �
 

�− �,��2

d2k�J1A2sy
2

8�2 −
A4sy

2cx
2

64�2�k
3�

with J1�4−1�k
−1���kx

nT���kx
n�+2−1�k

−1�kx

2 �k� and n
�2−1�k

−1�2Asx ,2Asy ,Bcxcy ,Csxsy�. In addition to these mass-
less excitations, we could also have several gapped
�“optical”� magnetic modes, provided that they are not
damped by the spinon individual excitations.65,66 One might
also expect a certain characteristic behavior of the spectral
weight themselves. In fact, Tsunetsugu et al.18 and Lauchli
et al.19 demonstrated that the spin-structure factor in the site-
nematic ordered state exhibits the vanishing spectral intensi-
ties of the Goldstone modes around the � point.

IV. SUMMARY AND OPEN ISSUES

In this paper, we have introduced the spin-triplet slave-
boson formulation as a mean-field theory for the bond-type
spin nematic state, which was described as the spin-triplet
RVB state. Namely, the d vectors of the spin-triplet RVB
ansatz constitute the quadrupolar order while the combina-
tion of the spin-triplet and singlet link variables on the same
link leads to the vector chiral order.

When applied to the S= 1
2 square-lattice frustrated ferro-

magnetic Heisenberg model, our spin-triplet slave-boson
analysis gives two nontrivial stable spin-triplet RVB ansatzes
in the intermediate coupling region around J1 :J2�1:0.4.
One is the Z2 BW state stabilized by the Anderson-Higgs
mechanism while the other is the SU�2� chiral p-wave state
protected by the Chern-Simon mechanism. Our slave-boson
analysis also found an unstable U�1� BW state as a mean-
field solution, which possibly gives a route to the realization
of spinon-confined quadrupolar ordered states with a certain
symmetry reduction. The projective symmetry group of the
Z2 BW state as well as the U�1� BW state is consistent with
the magnetic space group of the d-wave bond-type spin nem-
atic state discussed in Ref. 5. Both of them exhibit the
antiferro-type configuration of the bond quadrupolar moment
shown in Fig. 1.

Contrary to a naive expectation, our BW state is classified
into a “weak topological �ordinary� insulator” instead of the
“strong topological insulator” defined in the recent
literatures.42–46 Physically speaking, such a ‘‘weak topologi-
cal insulator �WTI�’’ is accompanied either by no spinon
edge states at all or by even numbers of the helical edge
states. To see that it is indeed a ‘‘WTI,’’ one can first deform
this Z2 ansatz into the U�1� ansatz ��→0�. Since the fermi-
onic dispersion remains gapped, the Z2 topological index
associated with the filled spinon band42,44 is also unchanged.
After reaching the simpler U�1� ansatz, let us then utilize the
Fermi-surface argument recently introduced by Sato.68 His
argument relates the Z2 topological index in the supercon-
ducting state �D�0� with the Fermi-surface topology in the
corresponding “normal” state �D=0�. That is, if a Fermi sur-
face in the normal state surrounds odd/even numbers of the
time-reversal invariant momentum points, the BW state con-
structed on top of this normal state is accompanied by
nontrivial/trivial Z2 topological index. Since our normal
state is composed of two decoupled u-RVB states at �=0,
the resulting Fermi surface clearly surrounds two time-
reversal symmetric k points, i.e., �0,0� and �� ,��. Thus, our
Z2 BW state should be classified into the ‘‘WTI’’ �Z2 even
class�.

In the followings, we will enumerate several open issues
and possible extensions of the current work. The most im-
mediate open issue is to identify the magnetic space group of
the confining phase proximate to the U�1� BW state based on
the monopole field studies.62,63 Namely, such an analysis
gives several complementary informations to the direct ED
studies of the original spin model.5

The fate of the SU�2� chiral p-wave state observed at
�c2����c3 is not so clear either, although we have argued
its stability against any �infinitesimally� small gauge fluctua-
tion. Namely, previous exact diagonalization studies of the
SU�2� spin model did not find any T-symmetry-breaking fer-
ronematic states between the d-wave bond-nematic state and
ferromagnetic state. In fact, it is also possible that, when
projected onto the real �spin� Hilbert space, the strong gauge
fluctuation could wipe out this time-reversal breaking ansatz.

Though we have mainly discussed the quadrupolar order
in this paper, our formulation can also describe vector chiral
order having no quadrupolar moment,4 i.e., Pjl,��0 and
Qjl,��=0. In fact, such vector chiral order state was observed
in the spin one half frustrated Heisenberg model having the
ring-exchange coupling.4 When applying the current spin-
triplet slave-boson formulation onto these quantum-spin sys-
tems, one could use the following mean-field parameteriza-
tion:

�E jl� D jl� D jl� � = �n1 n2 n3 � ,

�
 jl� − � jl� � jl� � = ��1 �2 �3 � ,

where �n1 ,n2 ,n3� are the normalized unit vectors orthogonal
to one another. Namely, such an ansatz gives a finite vector
chirality, P jl�2i
�=1

3 ��n� without any quadrupolar mo-
ments. We generally have three alternative ways to param-
eterize this vector chiral order
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�E jl� D jl� D jl� � = �n1 n2 n3 � ,

�
 jl� − � jl� � jl� � = ��1 �2 �3 �

or

�E jl� E jl� D jl� � = �n1 n2 n3 � ,

�
 jl� 
 jl� � jl� � = ��1 �2 �3 �

or

�E jl� D jl� E jl� � = �n1 n2 n3 � ,

�
 jl� − � jl� 
 jl� � = ��1 �2 �3 � .
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APPENDIX: LARGE N FRUSTRATED FERROMAGNETIC
MODEL

The mean-field analysis described in this paper becomes
exact in the large N limit of the following action:

Z =
 dUsindUtrida��d�a†d�a exp�− 

0

	

d�L� , �A1�

L =
1

2

j

Tr�� j
a†����0 + 


�=1

3

iaj,�
� ���� j

a�
−

J1

4 

�jl�

�N�− 	E jl	2 − 	D jl	2� + Tr�� j
a†Ujl,�

tri �l
a��

T��

−
J2

4 

��jl��

�N�− 	
 jl	2 − 	� jl	2� + Tr�� j
a†Ujl

sin�l
a�� , �A2�

where the summations with respect to the fermion’s species
index a �=1, . . . ,N� were made implicit. The integration over
the auxiliary fields leads the following large N spin Hamil-
tonian for frustrated ferromagnets:

HN � −
J1

N


�jl�

�S j
ab · Sl

ba + � j
ab�l

ba� +
J2

N



��jl��
S j

ab · Sl
ba.

�A3�

Note that, in addition to the usual SP�2N� spin operators,33

we have the density operator which is asymmetric in the
fermion’s species index

�ab �
i

2
�f�

a†f�
b − f�

b†f�
a�, Sab3 �

1

2
�f↑

a†f↑
b − f↓

b†f↓
a� ,

Sab+ �
1

2
�f↑

a†f↓
b + f↑

b†f↓
a�, Sab− � �Sab+�†. �A4�

The Hilbert space of this generalized spin Hamiltonian is
defined as the SU�2�-gauge-invariant subspace of the fermi-
onic Hilbert space.33 That is, any fermion wave function
which respects the following local constraints is an element
of our Hilbert space:

�

a=1

N

f j�
a†��̂���	f j	

a �	phy� � 0, ∀ j,� = 1,2,3.

The density and spin operators defined in Eq. �A4� in fact act
within this physical Hilbert space. Moreover, they observe
the following commutation relations:

�Sab3,Scd3� =
1

2
��bcSad3 − �adScb3� ,

�Sab3,Scd+� =
1

2
��bcSad+ + �bdSac+� ,

�Sab3,Scd−� = −
1

2
��adSbc− + �acSbd−� ,

�Sab+,Scd+� = 0, �Sab−,Scd−� = 0,

�Sab+,Scd−� =
1

2
��acSbd3 + �adSbc3 + �bcSad3 + �bdSac3� ,

��ab,Scd�� =
i

2
��bcSad� − �acSbd� − �adScb� + �bdSca�� ,

��ab,Scd3� =
i

2
��bcSad3 − �acSbd3 − �adScb3 + �bdSca3� ,
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��ab,�cd� =
i

2
��bc�ad − �ac�bd − �ad�cb + �bd�ca� .

�A5�

Using them, one can argue that the generalized spin Hamil-
tonian given in Eq. �A3� is invariant under those continuous
symmetries which are generated by

�tot
ab, 


a=1

N

Stot
aa3, 


a=1

N

Stot
aa1, 


a=1

N

Stot
aa2.

When N=1, �ab disappears by itself and Eq. �A3� in combi-
nation with Eq. �A5� reduces to the SU�2� Heisenberg spin
model defined in Eq. �2�.
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